The Gorenstein-projective modules over a monomial algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Brief Introduction to Gorenstein Projective Modules

Since Eilenberg and Moore [EM], the relative homological algebra, especially the Gorenstein homological algebra ([EJ2]), has been developed to an advanced level. The analogues for the basic notion, such as projective, injective, flat, and free modules, are respectively the Gorenstein projective, the Gorenstein injective, the Gorenstein flat, and the strongly Gorenstein projective modules. One c...

متن کامل

A generalization of strongly Gorenstein projective modules

This paper generalize the idea of the authors in J. Pure Appl. Algebra 210 (2007) 437–445. Namely, we define and study a particular case of Gorenstein projective modules. We investigate some change of rings results for this new kind of modules. Examples over not necessarily Noetherian rings are given.

متن کامل

The Gorenstein Projective Modules Are Precovering

The Gorenstein projective modules are proved to form a precovering class in the module category of a ring which has a dualizing complex. 0. Introduction This paper proves over a wide class of rings that the Gorenstein projective modules form a precovering class in the module category. Let me explain this statement. There are two terms of mystery, “Gorenstein projective modules” and “precovering...

متن کامل

Strongly Gorenstein projective , injective and flat modules

Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the...

متن کامل

Relative Singularity Categories and Gorenstein-projective Modules

We introduce the notion of relative singularity category with respect to any self-orthogonal subcategory ω of an abelian category. We introduce the Frobenius category of ω-Cohen-Macaulay objects, and under some reasonable conditions, we show that the stable category of ω-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we relate the stable cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics

سال: 2018

ISSN: 0308-2105,1473-7124

DOI: 10.1017/s0308210518000185